
Chapter 12

Bounded gaps between primes

12.1 Introduction

One often hears that the twin primes conjecture is an old conjecture, possibly dating

back thousands of years to the time of the ancient Greeks. In reality, the first-

recorded instance of the twin primes conjecture comes from a textbook written by

Alphonse de Polignac, who was the son of the prime minister to Charles X of France.

Conjecture 12.1.1 (de Polignac, 1849). For all even integers h, there are infinitely

many prime pairs (p, p+ h).

In the particular case where h = 2, this is the famous twin primes conjecture.

However, it actually says a lot more: it posits that every even integer can be a gap

between pairs of primes infinitely often! Contrast this with the situation for odd

gaps between primes: each odd gap can occur at most once, since 2 is the only even

prime.

Recall that in Section 8.6.3, we gave a heuristic argument for the count of twin

prime pairs. We saw that the heuristic strongly suggests that:

#{p 6 x : p, p+ 2 prime} ⇡ C2
x

(log x)2
,
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where

C2 = 2
Y

q prime
q>3

(1� 2/q)

1� 1/q)2
⇡ 1.3203236...

Our heuristic relied on the assumption that the primes p are uniformly dis-

tributed mod q. If the primes were uniformly distributed, we would expect

⇡(x; q, a) ⇡
⇡(x)

'(q)
,

since we would expect there to be a 1/'(q) chance of landing in a given residue class

a (mod q) for all q 6 x with gcd(a, q) = 1.

In Chapter 11, we encountered the Bombieri-Vinogradov Theorem. We will use

the version that is stated in terms of ⇡(x; q, a):

Theorem 12.1.2 (Bombieri-Vinogradov, 1965/6). For every constant A > 0, there

exists a constant B = B(A) such that

X

q6Q

max
amod q

(a,q)=1

���⇡(x; q, a)�
Li(x)

'(q)

���⌧A

x

(log x)A
,

where Q = x
1/2

(log x)B .

Observe that we can take Q almost up to x1/2, but not quite. The fact that we

do not know if the primes are well-distributed mod q for values of q beyond x1/2 is

often referred to as the “square root barrier.” There is a conjecture of Elliott and

Halberstam which says that the same principle should hold for larger values of Q.

In particular, it says:

Conjecture 12.1.3 (Elliott-Halberstam, 1968). The Bombieri-Vinogradov Theorem

still holds with Q = x✓, for every ✓ < 1.

The parameter ✓ is called the level of distribution of the set of primes. Note that

we cannot take Q as large as Q = x

(log x)B , since it was shown by Friedlander and

Granville [3] in 1989 that the result is false for such Q.

78



12.2 Admissible k-tuples

As a generalization of de Polignac’s conjecture, it is natural to wonder whether there

are infinitely many k-tuples of primes:

(p+ h1, p+ h2, ..., p+ hk).

Some k-tuples clearly fail. For example:

Example 1. p, p + 2, p + 4 cannot be simultaneously prime infinitely often, since

one of these numbers must be divisible by 3.

The problem that we encountered in the Example 1 is that it “covered” all of the

residue classes modulo 3. Thus, one of the three elements in the tuple was always

bound to be divisible by three, regardless of the choice of p. Such numbers clearly

cannot be prime. In order to exclude the tuples with so-called “congruence class

obstructions” that prevent them from being prime infinitely often, we define the

concept of admissibility.

Definition 12.2.1. A k-tuple (h1, ..., hk) of ordered nonnegative integers is admis-

sible if it does not cover all residue classes mod p for any prime p.

Example 2. The tuple (0, 2, 6, 8, 12) is an admissible 5-tuple. Observe that the

following remainders are not covered:

1 (mod 2)

1 (mod 3)

4 (mod 5)

(For moduli larger than 5, there will always be at least one residue class that is not

covered, since there are more residue classes than elements in the tuple.)

Prior to the groundbreaking work of Zhang, Maynard, and Tao in 2013, there

was only a conditional proof that there exists a finite number that occurs infinitely

often as a gap between pairs of primes:

Theorem 12.2.2 (Goldston, Pintz, Yıldırım, 2009). If (h1, ..., hk) is admissible and

the Elliot-Halberstam conjecture holds with Q = x1/2+⌘ (for some ⌘ > 0 depending on

k) then there exist infinitely many integers n such that at least 2 of n+h1, ..., n+hk

are prime.

79



12.3 The GPY Argument

In what follows, we will outline the argument given by Goldston, Pintz, and Yıldırım

(GPY) in [5], highlighting the places where sieve methods are used. This chapter

largely follows the proof outlined in Section 4 of [6].

Let H = (h1, ..., hk) be an admissible k-tuple. Let x > hk. Our goal is to choose

a nonnegative weight ⌫ (where ⌫(n) > 0 for all n) such that

X

x<n62x

⌫(n)

0

@
kX

i=1

✓(n+ hi)� log 3x

1

A > 0,(12.3.1)

where

✓(m) =

8
<

:
logm if m is prime,

0 otherwise.

By introducing the sieve weight ⌫(n), we are massively biasing (n+h1), ..., (n+hk)

towards having few prime divisors. If (12.3.1) holds then there is at least one positive

term, n0, in the sum. Then ⌫(n0) > 0 since ⌫(n) > 0 for all n. Hence,

kX

i=1

✓(n0 + hi) > log 3x.

But each n + hi 6 2x + hk < 2x + x, so each ✓(n + hi) < log 3x. Recall that

✓(n+ hi) = log(n+ hi) if n+ hi is prime. By the last inequality, at least two of the

✓(n+ hi)’s are nonzero, hence at least two of the n+ h1, ..., n+ hk are prime.

The main di�culty in this approach is to choose a weight ⌫ that satisfies the

conditions above for which (12.3.1) is easy to compute.

Key Idea: Take

⌫(n) :=

 
X

d|P(n)
d6z

�d

!2

,

where �d := µ(d)G
⇣

log d
log z

⌘
, G
⇣

log d
log z

⌘
is a measurable bounded function supported

only on [0, 1], and P(n) := (n+ h1)(n+ h2) · · · (n+ hk).
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The square of the sum of �d’s should look familiar. That’s because we are using

a version of Selberg’s sieve. Observe that, because µ(d) = 0 when d is divisible by

a square, then �d is only supported on squarefree positive integers 6 z. Using our

Key Idea in (12.3.1) and expanding, we obtain:

X

d1,d26z

d:=lcm[d1,d2]

�d1�d2

 
kX

i=1

X

x<n62x
d|P(n)

✓(n+ hi)� log 3x
X

x<n62x
d|P(n)

1

!
.(12.3.2)

Let ⌦(d) := {m(mod d) : d | P (m)} and ⌦i(d) := {m 2 ⌦(d) : gcd(d,m+ hi) = 1}.

Then the expression in the parentheses in (12.3.2) can be re-written as:

kX

i=1

X

m2⌦i(d)

X

x<n62x
n⌘mmod d

✓(n+ hi)� log 3x
X

m2⌦(d)

X

x<n62x
n⌘mmod d

1,(12.3.3)

since P (n) ⌘ P (m) (mod d) if and only if n ⌘ m (mod d). The inner sum in the

subtracted term is straightforward to compute:
X

x<n62x
n⌘mmod d

1 =
x

d
+O(1).

We will take z 6 x1/4�o(1) so that the error terms are negligible. In order to compute
X

x<n62x
n⌘m (mod d)

✓(n+ hi),

we apply the Bombieri-Vinogradov Theorem, which allows us to conclude that, on

average,

✓(x; d,m+ hi) ⇠
x

'(d)

for d < x1/2�o(1). So, on average, we have

✓(2x; d,m+ hi)� ✓(x; d,m+ hi) ⇠
x

'(d)

for d < x1/2�o(1). Recall that we assumed that z 6 x1/4�o(1). Goldston, Pintz, and

Yıldırım showed that if one can take z just beyond x1/4 then it would already be

enough to prove that there are bounded gaps between primes. In other words, if we

could take the level of distribution of the primes up to 1/2+⌘ for some 0 < ⌘ < 1/2,

we would have our desired result. Let’s examine ⌦(d) and ⌦i(d):
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• We can construct ⌦(d) and ⌦i(d) from ⌦(p) and ⌦i(p) via the Chinese Re-

mainder Theorem. Let !(d) := |⌦(d)|. Then ! is multiplicative.

• Each |⌦i(p)| = !(p)� 1 := !⇤(p). Thus, we can extend !⇤ to a multiplicative

function on d: |⌦i(d)| = !⇤(d).

In this proof sketch, we will ignore the accumulated error terms and focus on

understanding the size of the main terms. By doing so, we see that the equation

(12.3.3) can be rewritten as

= k!⇤(d)
x

'(d)
� (log 3x)!(d)

x

d

= x

✓
k
!⇤(d)

'(d)
� (log 3x)

!(d)

d

◆
.

Notice that this di↵erence is usually negative, which is why we cannot take the �d’s

to all be positive. Therefore, equation (12.3.2) is equivalent to:

x
⇣
k

X

d1,d26z

d:=lcm[d1,d2]

�d1�d2

!⇤(d)

'(d)
� (log 3x)

X

d1,d26z

d:=lcm[d1,d2]

�d1�d2

!(d)

d

⌘
.(12.3.4)

In order to evaluate these two sums, we can either apply Perron’s Formula or Sel-

berg’s combinatorial approach. Details can be found on p. 18 - 23 in [6].

Recall that our goal was to show that the equation above is > 0. We can show

this provided that there exists 0 < ⌘ < 1/2 (depending on k) such that

1 + 2⌘ >
⇣
1 +

1

2`+ 1

⌘⇣
1 +

2`+ 1

k

⌘
(12.3.5)

when k+ ` = m. For k = (2`+1)2, any ` that is large enough (depending on ⌘ > 0)

will do.

In conclusion, if the primes have level of distribution 1/2 + ⌘ (i.e., if the Elliot-

Halberstam Conjecture holds) and if ` 2 Z satisfies equation (12.3.5), then for every

admissible k-tuple h1, ..., hk with k = (2` + 1)2 there are infinitely many positive

integers n such that n+ h1,...,n+ hk contains at least two primes.

Recall that sieve methods do not distinguish between primes and almost primes

(the so-called parity problem). Sieving lets us work in a sample space consisting of

primes and almost-primes. But the primes have positive density within this sample

space, so showing that equation (12.3.4) is positive still means that we have caught

some tuples with primes in them.
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12.4 Zhang’s Approach

In May 2013, Yitang Zhang [19] stunned the mathematical community by posting

a paper on the arXiv that claimed to prove that there are bounded gaps between

primes infinitely often. One of the remarkable features of his proof was that he

mainly uses the ideas that were already proposed by Goldston, Pintz, and Yildirim.

However, he devised a clever way to get around the square root barrier.

Definition 12.4.1. Let P+(n) denote the largest prime factor of an integer n. An

integer n is y-smooth (or y-friable) if P+(n) 6 y.

In the GPY setup, Zhang takes

�d := µ(d)
1

m!

⇣ log(z/d)
log z

⌘m
,

where d 2 D is the subset of squarefree integers in {1, .., z} that are y-smooth, and

�0 = 0 otherwise. He takes z < x1/3. With these extra conditions, he was able to

obtain a result like the Bombieri-Vinogradov Theorem that goes just beyond x1/2:

Theorem 12.4.2 (Zhang, 2013). There exist constants ⌘, � > 0 such that for any

given a 2 Z,

X

q6Q

(q,a)=1
q y�smooth
q squarefree

���✓(x; q, a)�
x

'(q)

���⌧A

x

(log x)A
,

where Q = x1/2+⌘ and y = x�.

If we take ⌘/2 = � = 1
1168 in Theorem 12.4.2 then we obtain:

Corollary 12.4.3 (Zhang, 2013). There exist infinitely many pairs of primes that

di↵er by at most 70 million.

After Zhang’s paper appeared, Terence Tao organized a group of mathematicians

to work on “optimizing” the arguments in order to obtain a bound smaller than 70

million. This group operated under the name Polymath8 (there were other Polymath

groups formed with the goal of bringing together large groups of people from around

the globe to chip away at di�cult proofs). By crowdsourcing the technical details,

Polymath8 was able to get the bound down to 4680.
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12.5 Maynard and Tao’s Approach

In the Goldston, Pintz, and Yıldırım approach, which was the basis for Zhang’s

proof, they studied divisors d such that d | (n + h1) · · · (n + hk), with d 6 z. In

November 2013, Maynard [9] (and Tao, independently) instead studied k-tuples of

divisors d1, ..., dk such that

d1 | (n+ h1), ..., dk | (n+ hk),

with d1d2 · · · dk 6 z. Rather than taking sieve weights �d as in GPY and Zhang’s

papers, Maynard uses multidimensional sieve weights. He takes

�d1,...,dk
⇡

⇣ kY

i=1

µ(di)
⌘
f(d1, ..., dk)

for a suitable smooth function f . The idea is then to look at:

X

a2⌦(m)

X

x<n62x
n⌘a (mod m)

⇣ kX

j=0

✓(n+ hj)� c log 3x
⌘
⇥

⇣ X

di|n+hi
16i6k

�d1,...,dk

⌘2
.

The goal is to show that this sum is positive. This is where the approaches of

Maynard and Tao di↵er. Tao uses Fourier analysis, while Maynard creates a higher-

dimensional version of Selberg’s sieve (which involves choosing optimal sieve weights

using the method of Lagrange multipliers). One important feature of Maynard’s

approach is that he does not need to go beyond the square root barrier. He just uses

the Bombieri-Vinogradov Theorem with z = x1/4�o(1). Although their approaches to

showing that the sum is positive di↵er, both Maynard and Tao arrived at the same

conclusion:

Theorem 12.5.1 (Maynard-Tao, 2013). Let m > 2. Then for any admissible k-

tuple h1, ..., hk with k “large enough” relative to m, there are infinitely many n such

that at least m of n+ h1,...,n+ hk are prime.

In Maynard’s original paper (which was partly responsible for his 2022 Fields

Medal), he was able to shrink the gap between primes down to 600, without relying

on the optimizations performed by Polymath8. Afterwards, Polymath8 used a com-

bination of methods from both Maynard and Zhang in order to prove the current

state-of-the-art:
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Theorem 12.5.2 (D. H. J. Polymath, 2014). There exist infinitely many pairs of

primes that are at most 246 apart.

By the Pigeonhole Principle, there is at least one even integer between 2 and

246 that occurs infinitely often as a gap between primes. Note that this gap can be

reduced to 6 by assuming a very strong form of the Elliot-Halberstam conjecture.

Currently, there are not even any conditional proofs that would allow one to conclude

that prime gaps of size 2 or 4 occur infinitely often. Sadly, twin primes remain out

of reach.

12.6 Bounded Gaps Recipe

In this section, we present a recipe for producing infinitely many primes with

bounded gaps between them, following the Maynard-Tao approach. Our goal is

to find values of n 2 [N, 2N ] for which n + h1, ..., n + hk contains several primes.

(For somewhat technical reasons, we want the endpoints on our interval to have the

same order of magnitude; this is why we are looking in the interval [N, 2N ] instead

of [1, N ].)

Our first objective is to create a sample space of plausible values of n for which

n + h1, ..., n + hk contains several primes. Let W :=
Q

p6log3 N
p, where log3 N :=

log log logN. Since h1, ..., hk are admissible, then we can choose ⌫ 2 Z such that

gcd(⌫ + hi,W ) = 1 for all 1 6 i 6 k. Next, we pre-sieve the interval so that just

those n satisfying n ⌘ ⌫ (mod W ) remain. This step has come to be known as the

“W -trick.” After performing the W -trick, our sample space becomes:

⌦ := {N < n 6 2N : n ⌘ ⌫ (mod W )}.

Now, let !(n) be nonnegative weights, and let �P denote the characteristic

function of the set of primes P. Moreover, define the following two sums:

S1 :=
X

N<n62N
n⌘⌫ (mod W )

!(n),(12.6.1)

S2 :=
X

N<n62N
n⌘⌫ (mod W )

⇣X
�P(n+ hi)

⌘
!(n).(12.6.2)
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(The subscript on the inner sum depends a bit on the problem at hand. We leave

it out for simplicity.)

Then S2
S1

is a weighted average of the number of primes among n+ h1,...,n+ hk.

Key Idea: If S2
S1

> (m� 1) for some m 2 Z
+ then at least m of the n+ h1,...,n+ hk

are prime, for some n 2 ⌦.

Therefore, we need to select weights !(n) such that:

1. S1 and S2 can be estimated without too much di�culty using tools that we

have at hand.

2. S2/S1 is large.

Unlike Zhang’s approach, which was useful precisely for overcoming the square

root barrier so that he could push through the GPY machinery, Maynard and Tao’s

approach has proven to be much more flexible. The results from Maynard’s paper

have been generalized in a number of ways. For example, they have been extended to

the number field and function field settings by Castillo, Hall, Lemke Oliver, Pollack,

and Thompson [2]. In a somewhat di↵erent direction, Thorner [18] showed that

there are bounded gaps between primes in Chebotarev sets1, from which a number

of interesting results can be derived. We will say that a set of primes q1, q2, ... has

the bounded gaps property if lim infn!1 qn+mqn < 1 for every m. Some examples

of sets with the bounded gaps property include:

• The set of primes p ⌘ 1 (mod 3) for which 2 is a cube (mod p).

• Fix n 2 Z
+. The set of primes expressible in the form x2 + ny2.

• Let ⌧ be the Ramanujan tau function2. The set of primes p for which

⌧(p) ⌘ 0 (mod d)

for any positive integer d.

1These are primes p such that Frobp lies in a specified conjugacy-invariant subset of Gal(K/Q)
for Galois extensions K/Q. These sets of primes have positive relative density, according to the
Chebotarev Density Theorem.

2Let H = {z 2 C : Re(z) > 0} be the complex upper half plane. Note that the func-
tion � : H ! C defined by �(z) ··= e(z)

Q1
n=1(1 � e(nz))24 is periodic with period 1, and so it

has a Fourier series expansion: �(z) =
P1

n=1 ⌧(n)e(nz). The Fourier coe�cients ⌧(n) define the
Ramanujan tau function.
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• The set of primes p for which #E(Fp) ⌘ p+1 (mod d) for any positive integer

d, where #E(Fp) is the number of Fp-rational points on an elliptic curve over

the finite field Fp.

All of these sets are Chebotarev sets, so the fact that they possess the bounded gaps

property follows from Thorner’s paper.

The Maynard-Tao approach has also been used for a number of problems on

“runs of consecutive primes” (sequences of consecutive primes that possess a given

property). Some examples of these types of theorems that have been proven using

the Maynard-Tao machinery include:

• For each k 2 Z
+, let dk = pk+1 � pk. In 1948, Erdős and Turán conjectured

that the sequence {dk} contains arbitrarily long runs of consecutive values

in the sequence that are increasing, as well as arbitrarily long runs that are

decreasing. This was proven by Banks, Freiburg, and Turnage-Butterbaugh [1]

in 2013.

• Let S10(pn) be the base-10 sum of digits of the prime pn. In the 1960’s, Erdős

and Sierpiński were interested in determining whether there are arbitrarily

long runs of primes pn for which s10(pn) is increasing/decreasing/constant. In

2015, Pollack and Thompson [16] proved that the answer is “yes” and that it

can be generalized to any base g.

In all of these problems, the proof follows the main ideas from the bounded gaps

recipe. One of the key di↵erences lies in the pre-sieving that occurs when the “W -

Trick” is applied. Choosing good sieve weights is one of the more-technical aspects

of Maynard’s work. Fortunately, in most cases, it has been possible to push through

these arguments using the same sieve weights that Maynard found!
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